tile.jpg FRACTAL FIND
Explore Fractal and Quantum Variations

Lynn Wienck

APPENDIX A.C
Mandelbar Variation Snowflakes

Mandelbar Variation Snowflakes use Mandelbrot variations, actually Mandelbar variations.
Mandelbrot is (x+iy)² and Mandelbar is (x-iy)² which produces a three-pronged figure.
The expression (x-iy)⁵ produces a six-pronged figure with the figure not quite radially symmetric, but with a snowflake shape.

Six-Pronged Mandelbar sf.jpg Six-Pronged Mandelbar Expanded Center sf.jpg Six-Pronged Mandelbar Snowflake sf.jpg
Six-Pronged Mandelbar with Pseudocode
for (i = 0; i ≤ 800; i++)
{
	for (j = 0; j ≤ 800; j++)
	{
		x = 0.0;
		y = 0.0;
		xs = -4.0+(i / 100.0);
		ys = -4.0+(j / 100.0);
		k = 0;
		do
		{
			k = k+1;
			xnew =  x⁵-10.0*x³*y²+5.0*x*y⁴+xs;
			ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ 255) && (x*x+y*y ≤ 16.0));
		PlotPixel(i, j, color);
	}
}
Six-Pronged Mandelbar Expanded Center with Pseudocode
The center of the Six-Pronged Mandelbar is expanded to reveal the prongs.
for (i = 0; i ≤ 1200; i++)
{
	for (j = 0; j ≤ 1200; j++)
	{
		x = 0.0;
		y = 0.0;
		xs = -1.5+(i / 400.0);
		ys = -1.5+(j / 400.0);
		k = 0;
		do
		{
			k = k+1;
			xnew =  x⁵-10.0*x³*y²+5.0*x*y⁴+xs;
			ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys;
	   		x = xnew;
			y = ynew;
		} while ((k ≤ 255) && (x*x+y*y ≤ 16.0));
		PlotPixel(i, j, color);
	}
}
Six-Pronged Mandelbar Snowflake with Pseudocode
To obtain this figure, pixels are plotted at iteration count increment.
for (i = 0; i ≤ 1200; i++)
{
	oldk = 0;
	for (j = 0; j ≤ 1200; j++)
	{
		x = 0.0;
		y = 0.0;
		xs = -1.5+(i / 400.0);
		ys = -1.5+(j / 400.0);
		k = 0;
		do
		{
			k = k+1;
			xnew =  x⁵-10.0*x³*y²+5.0*x*y⁴+xs;
			ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ 255) && (x*x+y*y ≤ 16.0));
		if ((oldk != k) && (k > 3) && (oldk > 3)) PlotPixel(i, j, color);
		oldk = k;
	}
}
Snowflake Build: (f(x,y), g(x,y)) Escape: h(x,y)>value
Example (x⁵-10.0*x³*y²+5.0*x*y⁴, -y⁵+10.0*x²*y³-5.0*x⁴*y) x²+y²>16.0
Snowflake #49 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/20.0) x²+y² >16.0
Snowflake #50 (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y x²+y²>16.0
Snowflake #51 (x⁵-10.0*x³*y²/k+5.0*x*y⁴*k, -y⁵+10.0*x²*y³/k-5.0*x⁴*y*k) x²+y²>16.0/k
Snowflake #52 (x⁵/k-10.0*x³*y²+5.0*x*y⁴*k, -y⁵/k+10.0*x²*y³-5.0*x⁴*y*k) |x|>16.0/k
Snowflake #53 (x⁵/k-10.0*x³*y²+5.0*x*y⁴-x, -y⁵/k+10.0*x²*y³-5.0*x⁴*y-y) |x|+|y|>16.0/k
Snowflake #54 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/4.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/4.0) |x|+|y|>16.0/k
Snowflake #55 (x⁵-10.0*x³*y²*k+5.0*x*y⁴/k, -y⁵+10.0*x²*y³*k-5.0*x⁴*y/k) x²+y²>16.0
Snowflake #56 (x⁵-10.0*x³*y²+5.0*x*y⁴/k, -y⁵+10.0*x²*y³-5.0*x⁴*y/k) x²+y²>16.0/k
Snowflake #57 (x⁵-10.0*x³*y²+5.0*x*y⁴-x*1.25, -y⁵+10.0*x²*y³-5.0*x⁴*y-y*1.25) |x+y| >16.0
Snowflake #58 (x⁵/k-10.0*x³*y²+5.0*x*y⁴-x/2.0, -y⁵/k+10.0*x²*y³-5.0*x⁴*y-y/2.0) |x³|+|y³|>8.0/k
Snowflake #59 (x⁵-10.0*x³*y²+5.0*x*y⁴+x, -y⁵+10.0*x²*y³-5.0*x⁴*y+y) x²+y²>16.0/k
Snowflake #60 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/20.0) |x+y|>16.0/k
Snowflake #61 (x⁵-10.0*x³*y²+5.0*x*y⁴-x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/4.0) |x+y|>8.0/k
Snowflake #62 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)+y/k) |x-y|>8.0/k
Snowflake #63 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)+y/k) |x*y|>8.0/k
Snowflake #64 (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)-y/k) |x*y|>16.0
Snowflake #65 (x⁵-10.0*x³*y²+5.0*x*y⁴-x/2.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/2.0) |x*x-y*y|>16.0/k
Snowflake #66 (x⁵-10.0*x³*y²+5.0*x*y⁴+x*k/12.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y*k/12.0) |x*y|>16.0/k
Snowflake #67 (x⁵-10.0*x³*y²+5.0*x*y⁴-x*k/12.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y*k/12.0) |x*y|>16.0/k
Snowflake #68 (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴*k-x/k, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y*k-y/k) |x+x+y+y|>16.0/k
Snowflake #69 (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴*k-x/k³, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y*k-y/k³) |x+y|>16.0/k
Snowflake #70 (x⁵-10.0*x³*y²+5.0*x*y⁴-x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y-y/k) x²+y>16.0/k
Snowflake #71 (x⁵-10.0*x³*y²+5.0*x*y⁴-x/k², -y⁵+10.0*x²*y³-5.0*x⁴*y-y/k²) |x*x-y*y)+|x-y|>16.0/k
Snowflake #72 ((x⁵/k-10.0*x³*y²/k+5.0*x*y⁴)/k-x/(k*k*k), (-y⁵/k+10.0*x²*y³/k-5.0*x⁴*y)/k-y/(k*k)) |x+y|*|x*y|>16.0/k
Snowflake #49 sf.jpg
Snowflake #50 sf.jpg
Snowflake #51 sf.jpg
Snowflake #52 sf.jpg
Snowflake #53 sf.jpg
Snowflake #54 sf.jpg
Snowflake #55 sf.jpg
Snowflake #56 sf.jpg
Snowflake #57 sf.jpg
Snowflake #58 sf.jpg
Snowflake #59 sf.jpg
Snowflake #60 sf.jpg
Snowflake #61 sf.jpg
Snowflake #62 sf.jpg
Snowflake #63 sf.jpg
Snowflake #64 sf.jpg
Snowflake #65 sf.jpg
Snowflake #66 sf.jpg
Snowflake #67 sf.jpg
Snowflake #68 sf.jpg
Snowflake #69 sf.jpg
Snowflake #70 sf.jpg
Snowflake #71 sf.jpg
Snowflake #72 sf.jpg