APPENDIX A.C
Mandelbar Variation Snowflakes
Mandelbar Variation Snowflakes use Mandelbrot variations, actually Mandelbar variations.
Mandelbrot is (x+iy)² and Mandelbar is (x-iy)² which produces a three-pronged figure.
The expression (x-iy)⁵ produces a six-pronged figure with the figure not quite radially symmetric, but with a snowflake shape.
Six-Pronged Mandelbar with Pseudocode
The center of the Six-Pronged Mandelbar is expanded to reveal the prongs.
To obtain this figure, pixels are plotted at iteration count increment.
for (i = 0; i ≤ 800; i++) { for (j = 0; j ≤ 800; j++) { x = 0.0; y = 0.0; xs = -4.0+(i / 100.0); ys = -4.0+(j / 100.0); k = 0; do { k = k+1; xnew = x⁵-10.0*x³*y²+5.0*x*y⁴+xs; ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys; x = xnew; y = ynew; } while ((k ≤ 255) && (x*x+y*y ≤ 16.0)); PlotPixel(i, j, color); } }Six-Pronged Mandelbar Expanded Center with Pseudocode
The center of the Six-Pronged Mandelbar is expanded to reveal the prongs.
for (i = 0; i ≤ 1200; i++) { for (j = 0; j ≤ 1200; j++) { x = 0.0; y = 0.0; xs = -1.5+(i / 400.0); ys = -1.5+(j / 400.0); k = 0; do { k = k+1; xnew = x⁵-10.0*x³*y²+5.0*x*y⁴+xs; ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys; x = xnew; y = ynew; } while ((k ≤ 255) && (x*x+y*y ≤ 16.0)); PlotPixel(i, j, color); } }Six-Pronged Mandelbar Snowflake with Pseudocode
To obtain this figure, pixels are plotted at iteration count increment.
for (i = 0; i ≤ 1200; i++) { oldk = 0; for (j = 0; j ≤ 1200; j++) { x = 0.0; y = 0.0; xs = -1.5+(i / 400.0); ys = -1.5+(j / 400.0); k = 0; do { k = k+1; xnew = x⁵-10.0*x³*y²+5.0*x*y⁴+xs; ynew = -y⁵+10.0*x²*y³-5.0*x⁴*y+ys; x = xnew; y = ynew; } while ((k ≤ 255) && (x*x+y*y ≤ 16.0)); if ((oldk != k) && (k > 3) && (oldk > 3)) PlotPixel(i, j, color); oldk = k; } }
Snowflake | Build: (f(x,y), g(x,y)) | Escape: h(x,y)>value |
---|---|---|
Example | (x⁵-10.0*x³*y²+5.0*x*y⁴, -y⁵+10.0*x²*y³-5.0*x⁴*y) | x²+y²>16.0 |
Snowflake #49 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/20.0) | x²+y² >16.0 |
Snowflake #50 | (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y | x²+y²>16.0 |
Snowflake #51 | (x⁵-10.0*x³*y²/k+5.0*x*y⁴*k, -y⁵+10.0*x²*y³/k-5.0*x⁴*y*k) | x²+y²>16.0/k |
Snowflake #52 | (x⁵/k-10.0*x³*y²+5.0*x*y⁴*k, -y⁵/k+10.0*x²*y³-5.0*x⁴*y*k) | |x|>16.0/k |
Snowflake #53 | (x⁵/k-10.0*x³*y²+5.0*x*y⁴-x, -y⁵/k+10.0*x²*y³-5.0*x⁴*y-y) | |x|+|y|>16.0/k |
Snowflake #54 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/4.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/4.0) | |x|+|y|>16.0/k |
Snowflake #55 | (x⁵-10.0*x³*y²*k+5.0*x*y⁴/k, -y⁵+10.0*x²*y³*k-5.0*x⁴*y/k) | x²+y²>16.0 |
Snowflake #56 | (x⁵-10.0*x³*y²+5.0*x*y⁴/k, -y⁵+10.0*x²*y³-5.0*x⁴*y/k) | x²+y²>16.0/k |
Snowflake #57 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x*1.25, -y⁵+10.0*x²*y³-5.0*x⁴*y-y*1.25) | |x+y| >16.0 |
Snowflake #58 | (x⁵/k-10.0*x³*y²+5.0*x*y⁴-x/2.0, -y⁵/k+10.0*x²*y³-5.0*x⁴*y-y/2.0) | |x³|+|y³|>8.0/k |
Snowflake #59 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x, -y⁵+10.0*x²*y³-5.0*x⁴*y+y) | x²+y²>16.0/k |
Snowflake #60 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/20.0) | |x+y|>16.0/k |
Snowflake #61 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x/20.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/4.0) | |x+y|>8.0/k |
Snowflake #62 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)+y/k) | |x-y|>8.0/k |
Snowflake #63 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)+y/k) | |x*y|>8.0/k |
Snowflake #64 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y)-y/k) | |x*y|>16.0 |
Snowflake #65 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x/2.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y/2.0) | |x*x-y*y|>16.0/k |
Snowflake #66 | (x⁵-10.0*x³*y²+5.0*x*y⁴+x*k/12.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y*k/12.0) | |x*y|>16.0/k |
Snowflake #67 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x*k/12.0, -y⁵+10.0*x²*y³-5.0*x⁴*y+y*k/12.0) | |x*y|>16.0/k |
Snowflake #68 | (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴*k-x/k, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y*k-y/k) | |x+x+y+y|>16.0/k |
Snowflake #69 | (x⁵*k-10.0*x³*y²*k+5.0*x*y⁴*k-x/k³, -y⁵*k+10.0*x²*y³*k-5.0*x⁴*y*k-y/k³) | |x+y|>16.0/k |
Snowflake #70 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x/k, -y⁵+10.0*x²*y³-5.0*x⁴*y-y/k) | x²+y>16.0/k |
Snowflake #71 | (x⁵-10.0*x³*y²+5.0*x*y⁴-x/k², -y⁵+10.0*x²*y³-5.0*x⁴*y-y/k²) | |x*x-y*y)+|x-y|>16.0/k |
Snowflake #72 | ((x⁵/k-10.0*x³*y²/k+5.0*x*y⁴)/k-x/(k*k*k), (-y⁵/k+10.0*x²*y³/k-5.0*x⁴*y)/k-y/(k*k)) | |x+y|*|x*y|>16.0/k |