APPENDIX B
Unit Circle Variation Bows
Unit Circle Variation Bows use polar coordinates and trigonometric functions.
The three-dimensional effect was created with pixel offset for a number of arbitrary iterations.
Unit Circle with Pseudocode
for (int i = 0; i ≤ 360000; i++) { θ = i*0.001; for (k = 1; k ≤ 16; k++) { θ = 2.0 * θ; x = cos(θ); y = sin(θ); } PlotPoint(x, y, color); }Modified Unit Circle with Pseudocode
for (i = 0; i ≤ 180000; i++) { x = 0.0; y = 0.0; θ = i*0.001; for (k = 1; k ≤ 2; k++) { θ = 2.0 * θ; xnew = cos(θ) + x; ynew = sin(θ) + y; x = xnew; y = ynew; PlotPoint(x, y, color); } }
Bow | Build: (f(θ,x,y), g(θ,x,y)) | Escape: k > value |
---|---|---|
Unit Circle | (cos(θ), sin(θ)) | k > 16 |
Modified Unit Circle | (cos(θ) + x, sin(θ) + y) | k > 2 |
Bow #1 | (cos(θ) + 0.5*x, sin(θ) + y) | k > 5 |
Bow #2 | (cos(θ) + sin(θ) + 0.5*x, sin(θ) + y) | k > 5 |
Bow #3 | (cos(θ) + sin(θ), sin(θ) + y) | k > 5 |
Bow #4 | (sin(θ) + x, cos(θ) + y) | k > 4 |
Bow #5 | (sin(θ) + cos(x), cos(θ) + y) | k > 6 |
Bow #6 | (sin(θ) + x*y, cos(θ) + y) | k > 4 |
Bow #7 | (sin(θ) + x*y, cos(θ) + 1.20*x*y) | k > 5 |
Bow #8 | (sin(θ) + x*y, cos(θ) + sin(θ) + y) | k > 4 |
Bow #9 | (sin(θ) - x + y, cos(θ) + y) | k > 4 |
Bow #10 | (sin(θ) - x, cos(θ) + y) | k > 5 |
Bow #11 | (sin(θ) - y, cos(θ) - x) | k > 5 |
Bow #12 | (cos(θ) + x - y*y, sin(θ) + y) | k > 5 |
Bow #13 | (cos(θ + y) + x, sin(θ + x) - y) | k > 4 |
Bow #14 | (sin(θ)*cos(θ) + x, sin(θ + x) - y) | k > 4 |
Bow #15 | (sin(θ)*cos(θ) - x, sin(θ) + y) | k > 5 |
Bow #16 | (sin(θ)*cos(θ) - x, cos(θ) + y) | k > 5 |
Bow #17 | (sin(θ)*cos(θ) - x, sin(θ) + y - x) | k > 5 |
Bow #18 | (cos(θ) + y, sin(θ) - x | k > 3 |
Bow #19 | (cos(θ) + y, x*sin(θ) - x) | k > 5 |
Bow #20 | (cos(θ) * x, sin(θ) + y) | k > 3 |
Bow #21 | (y*cos(θ) + y, sin(θ) + x) | k > 4 |
Bow #22 | (cos(θ), y*sin(θ) + x) | k > 4 |
Bow #23 | (cos(θ) - y, y*sin(θ) + x) | k > 4 |
Bow #24 | (cos(θ) - sin(θ)*y, y*sin(θ) + x) | k > 4 |