tile.jpg FRACTAL FIND
Explore Fractal and Quantum Variations

Lynn Wienck

APPENDIX C
Unit Circle Variation Balls

Unit Circle Variation Balls use polar coordinates and trigonometric functions, but the angle, θ, is not doubled each iteration.
The case could be made that this is not a true Julia set unit circle variation. Quibble if you choose, but enjoy the figures.
Each figure builds dynamically.
Unit Circle with Pseudocode
Unit Circle ball.jpg Example Ball ball.jpg
for (θ = 0; θ ≤ 360000; θ++)
{
	xnew = cos(θ);
	ynew = sin(θ);
	x = 0.0;
	y = 0.0;
	for (m = 0; m ≤ 0; m++)
   	PlotPoint(200.0*xnew+1.0*m*x, 200.0*ynew+1.0*m*y, color);
}
Example Ball with Pseudocode
for (θ = 0; θ ≤ 1800000; θ++)
{
	xnew = cos(0.4001*θ);
	ynew = sin(0.4001*θ);
	x = cos(θ);
	y = sin(θ);
	for (m = 0; m ≤ 19; m++)
	PlotPoint(200.0*xnew+4.0*m*x, 200.0*ynew+4.0*m*y, color);
}
Ball Build: (fa(θ),ga(θ))(fb(θ),gb(θ)) Scale: scalea, scaleb Offset: mmin, mmax
Unit Circle (cos(θ),sin(θ))(0.0, 0.0) 200.0, 1.0 0, 0
Example (cos(0.4001*θ),sin(0.4001*θ))(cos(θ),sin(θ)) 200.0, 4.0 0, 19
Ball #1 (cos(0.1101*θ)*sin(0.01*θ),sin(0.1101*θ)*sin(0.01*θ))(cos(0.1101*θ)*sin(0.01*θ),sin(0.1101*θ)*sin(0.01*θ)) 375.0, 0.0 0, 51
Ball #2 (cos(0.99*θ)*sin(0.02*θ),sin(0.99*θ)*sin(0.02*θ))(cos(0.99*θ)*sin(0.02*θ),sin(0.99*θ)*sin(0.02*θ)) 375.0, 0.0 0, 51
Ball #3 (cos(0.999*θ)*sin(0.0025*θ),sin(0.999*θ)*sin(0.0025*θ))(cos(0.999*θ)*sin(0.0025*θ),sin(0.999*θ)*sin(0.0025*θ) 225.0, 0.0 0, 51
Ball #4 (cos(0.9*θ)*sin(0.9999*θ),sin(0.9*θ)*sin(0.9999*θ))(cos(0.9*θ)*sin(0.9999*θ),sin(0.9*θ)*sin(0.9999*θ)) 375.0, 0.0 0, 0
Ball #5 (cos(θ),sin(θ))(cos(0.001*θ),sin(0.001*θ)) 200.0, 3.0 0, 51
Ball #6 (cos(0.301*θ)*sin(0.302*θ),sin(0.301*θ))(cos(0.301*θ)*sin(0.302*θ),sin(0.301*θ)) 200.0, 3.0 0, 51
Ball #7 (cos(0.5*θ)*sin(0.301*θ),sin(0.5*θ)*cos(0.301*θ))(cos(0.5*θ)*sin(0.301*θ),sin(0.5*θ)*cos(0.301*θ)) 225.0, 3.0 0, 51
Ball #8 (cos(0.998*θ)*tan(0.998*θ),cos(0.998*θ)*cos(0.999*θ))(cos(0.998*θ)*tan(0.998*θ),cos(0.998*θ)*cos(0.999*θ)) 225.0, 3.0 0, 51
Ball #9 (cos(0.081*θ)*tan(0.081*θ),cos(0.081*θ)*cos(0.080*θ))(cos(0.081*θ)*tan(0.081*θ),cos(0.081*θ)*cos(0.080*θ)) 225.0, 3.0 0, 51
Ball #10 (cos(θ),sin(θ))(cos(0.0001*θ)*tan(0.0001*θ)-sin(0.008*θ)*sin(0.008*θ))(2.0*cos(0.0001*θ)*sin(0.008*θ)) 200.0, 3.0 0, 51
Ball #11 (cos(θ),sin(θ))(cos(0.001*θ)*tan(0.001*θ)-sin(0.001*θ)*sin(0.001*θ),2.0*cos(0.001*θ)*sin(0.001*θ)) 200.0, 3.0 0, 51
Ball #12 (cos(θ),sin(θ))(cos(-0.99*θ)*tan(-0.99*θ)-sin(-0.99*θ)*sin(-0.99*θ),2.0*cos(-0.99*θ)*sin(-0.99*θ)) 200.0, 3.0 0, 51
Ball #13 (cos(θ),sin(θ))(cos(-0.501*θ)*tan(-0.501*θ)-sin(-0.501*θ)*sin(-0.501*θ),2.0*cos(-0.501*θ)*sin(-0.501*θ)) 200.0, 3.0 0, 51
Ball #14 (cos(θ),sin(θ))(cos(0.01*θ)*cos(0.01*θ)-sin(-0.994*θ)*sin(-0.994*θ),2.0*cos(0.01*θ)*sin(-0.994*θ)) 200.0, 3.0 0, 51
Ball #15 (cos(θ),sin(θ))(cos(-θ)*cos(-θ)-sin(-θ)*sin(-θ),2.0*cos(-θ)*sin(-θ)) 200.0, 3.0 0, 51
Ball #16 (cos(θ),sin(θ))(cos(1.005*θ),sin(1.005*θ)) 200.0, 3.0 0, 51
Ball #17 (cos(θ),sin(θ))(cos(-1.01*θ),-sin(-1.01*θ)) 200.0, 3.0 0, 51
Ball #18 (cos(θ),sin(θ))(cos(-0.5*θ),sin(-0.5*θ)) 200.0, 3.0 0, 51
Ball #19 (cos(θ),sin(θ)(cos(-1.1*θ),sin(-1.01*θ)) 200.0, 3.0 0, 51
Ball #20 (cos(θ),sin(θ))(cos(-0.7503*θ),sin(0.5*θ)) 200.0, 3.0 0, 51
Ball #21 (cos(θ),sin(θ))(cos(-0.8001*θ),sin(-0.8001*θ) 200.0, 3.0 0, 51
Ball #22 (cos(θ),sin(θ))(cos(-0.75*θ),sin(0.375*θ)) 200.0, 3.0 0, 51
Ball #23 (cos(-0.7503*θ),sin(0.5*θ))(cos(θ),sin(θ)) 200.0, 3.0 0, 51
Ball #24 (cos(-0.2*θ),sin(0.75*θ))(cos(θ),sin(θ)) 200.0, 3.0 0, 51
Ball #1 ball.jpg
Ball #2 ball.jpg
Ball #3 ball.jpg
Ball #4 ball.jpg
Ball #5 ball.jpg
Ball #6 ball.jpg
Ball #7 ball.jpg
Ball #8 ball.jpg
Ball #9 ball.jpg
Ball #10 ball.jpg
Ball #11 ball.jpg
Ball #12 ball.jpg
Ball #13 ball.jpg
Ball #14 ball.jpg
Ball #15 ball.jpg
Ball #16 ball.jpg
Ball #17 ball.jpg
Ball #18 ball.jpg
Ball #19 ball.jpg
Ball #20 ball.jpg
Ball #21 ball.jpg
Ball #22 ball.jpg
Ball #23 ball.jpg
Ball #24 ball.jpg