tile.jpg FRACTAL FIND
Explore Fractal and Quantum Variations

Lynn Wienck

APPENDIX E
Frame Variations

Frame Variations use Julia variations where iterations include static start point (xs, ys) and modified f, g, h for each figure.
Example Frame with Pseudocode
Example Frame frame.jpg frame.jpg
for (int i = 0; i ≤ 500; i++)
{
	oldk = 0;
	for (int j = 0; j ≤ 500; j++)
	{
		xs = 0.0;
		ys = 0.0;
		x = -2.5 + (i / 100.0);
		y = -2.5 + (j / 100.0);
		xss = x;
		yss = y;
		k = 0;
		do
		{
			k = k + 1;
			xnew = x*y*y - x + xs;
			ynew = x*y*x - y + ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ kmax) && (x*x+y*y ≤ value));
		if (oldk != k) PlotPixel(i, j, color));
		oldk = k;
	}
}
for (int j = 0; j ≤ 500; j++)
{
	oldk = 0;
	for (int i = 0; i ≤ 500; i++)
	{	xs = 0.0;
		ys = 0.0;
		x = -2.5 + (i / 100.0);
		y = -2.5 + (j / 100.0);
		xss = x;
		yss = y;
		k = 0;
		do
		{
			k = k + 1;
			xnew = x*y*y - x + xs;
			ynew = x*y*x - y + ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ kmax) && (x*x+y*y ≤ value));
		if (oldk != k) PlotPixel(i, j, color));
		oldk = k;
	}
}
Frame Build: (f(x,y), g(x,y), c) Escape: h(x,y) > value
Example (Top) ((x*y*y - x, x*y*x - y), (0.0, 0.0)) x*x + y*y > 6.25
Example (Bottom) ((x*y*y - x, x*y*x - y), (0.0, 0.0)) x*x + y*y > 6.25 / k
Frame #1 ((x*y*y - x + cos(xss), x*y*x - y + sin(yss)), (0.0, 0.0)) x*x + y*y > 25.0 / k
Frame #2 ((x*y*y - x + cos(xss)*cos(xss) - sin(yss)*sin(yss), x*y*x - y - 2.0*cos(xss)*sin(yss)), (0.0, 0.0)) x*x + y*y > 16.0 / k
Frame #3 ((x*y*y - x + xss*xss - yss*yss, x*y*x - y + 2.0*xss*yss)), (0.0, 0.0)) x*x + y*y > 25.0 / k
Frame #4 ((x*y*y - x + cos(xs), x*y*x - y + sin(ys)), (0.0, 0.0)) x*x + y*y > 16.0 / k
Frame #5 ((x*y*y - x + 0.5*y*y + xs, x*y*x - y + 0.5*x*x + ys), (0.0, 0.0)) x*x + y*y > 9.0 / k
Frame #6 ((x*y*y - x + cos(yss), x*y*x - y + sin(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #7 ((x*y*y - x + cos(xss)*cos(xss) - sin(yss)*sin(yss), x*y*x - y + 2.0*cos(xss)*sin(yss)), (0.0, 0.0)) x*x + y*y > 25.00 / k
Frame #8 ((x*y*y - x + cos(yss)*cos(yss), x*y*x - y + sin(xss)*sin(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #9 ((x*y*y - x + sin(yss), x*y*x - y + sin(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #10 ((x*y*y - x + cos(yss), x*y*x - y + cos(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #11 ((x*y*y - x + cos(yss + xss), x*y*x - y + cos(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #12 ((x*y*y - x - x*y, x*y*x - y), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #13 ((x*y*y - x - sin(y*y*x), x*y*x - y - sin(x*x*y)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #14 ((x*y*y - x + sin(yss), x*y*x - y), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #15 ((x*y*y - x - xss*xss - yss*yss, x*y*x - y + 2.0*xss*yss), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #16 ((x*y*y - x + cos(x), x*y*x - y + sin(y)), (0.0, 0.0)) x*x + y*y > 25.0 / k
Frame #17 ((x*y*y - x + cos(x), x*y*x - y + sin(x)), (0.0, 0.0)) x*x + y*y > 20.0 / k
Frame #18 ((x*y*y - x + cos(xss), x*y*x - y + sin(xss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #19 ((x*y*y - x - cos(xss)+sin(yss), x*y*x - y + sin(yss)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #20 ((x*y*y - x + xss, x*y*x - y + yss), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #21 ((x*y*y - x - xss*xss, x*y*x + y - yss*x)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #22 ((x*y*y - x + xss*y, x*y*x + y - yss*x)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #23 ((x*y*y - x + xss*y*yss, x*y*x + y - yss*x)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #24 ((x*y*y - x + x*yss, x*y*x + y - yss*x)), (0.0, 0.0)) x*x + y*y > 20.25 / k
Frame #1 frame.jpg
Frame #2 frame.jpg
Frame #3 frame.jpg
Frame #4 frame.jpg
Frame #5 frame.jpg
Frame #6 frame.jpg
Frame #7 frame.jpg
Frame #8 frame.jpg
Frame #9 frame.jpg
Frame #10 frame.jpg
Frame #11 frame.jpg
Frame #12 frame.jpg
Frame #13 frame.jpg
Frame #14 frame.jpg
Frame #15 frame.jpg
Frame #16 frame.jpg
Frame #17 frame.jpg
Frame #18 frame.jpg
Frame #19 frame.jpg
Frame #20 frame.jpg
Frame #21 frame.jpg
Frame #22 frame.jpg
Frame #23 frame.jpg
Frame #24 frame.jpg