tile.jpg FRACTAL FIND
Explore Fractal and Quantum Variations

Lynn Wienck

APPENDIX I
Polar Variations

Polar Variations use Unit Circle variations with polar coodinates and trigonometric functions.
See Appendix B for a different aspect of this configuration type and further discussion.

Polar Example polar.jpg
Polar Example with Pseudocode
for (int i = 0; i ≤ 100000; i++)
{
	x = 0.0;
	y = 0.0;
	for (k = 3; k ≤ 6; k++)
	{
		θ = (2.0k * (i / 1000.0));
		xnew = y + 2.0 * cos(θ);
		ynew = x + 2.0 * sin(θ);
		x = xnew;
		y = ynew;
	}
	PlotPoint(x * scale, y * scale, color);
}
Polar Build: (f(θ,x,y), g(θ,x,y)) kmin, kmax
Example (y + 2.0 * cos(θ), x + 2.0 * sin(θ)) 3, 6
Polar #1 (cos(θ + k) + x, sin(θ + k) + y) 9, 13
Polar #2 (cos(θ) + x * 0.5, sin(θ) - y * 0.5) 6, 9
Polar #3 (cos(θ) + y * 0.75, sin(θ) - x * 0.5) 6, 9
Polar #4 (cos(θ + k) + x * y, sin(θ + k) + x * y) 9, 13
Polar #5 (y + cos(y + θ), x + sin(x + θ)) 3, 6
Polar #6 (y + cos(θ) - 0.25 * x, x + sin(θ) + 0.25 * y) 3, 7
Polar #7 (cos(θ * k) + x * 0.5, sin(θ * k) - y * 0.5) 9, 10
Polar #8 (cos(θ * k) + x * 0.5, sin(θ * k) - y * 0.5) 2, 5
Polar #9 (cos(θ * k) - x * 0.5, sin(θ * k) - x*y * 0.5) 2, 4
Polar #10 (y * cos(θ * k) - x * 0.5, sin(θ * k) - y * 0.5) 2, 4
Polar #11 (cos(θ * k) - x * 0.5, (cos(θ * k) - x * 0.5) * sin(θ * k) - y * 0.5) 2, 5
Polar #12 (x * y + cos(θ * k) - x * 0.5, sin(θ * k) - y * 0.5) 2, 4
Polar #1 polar.jpg
Polar #2 polar.jpg
Polar #3 polar.jpg
Polar #4 polar.jpg
Polar #5 polar.jpg
Polar #6 polar.jpg
Polar #7 polar.jpg
Polar #8 polar.jpg
Polar #9 polar.jpg
Polar #10 polar.jpg
Polar #11 polar.jpg
Polar #12 polar.jpg