tile.jpg FRACTAL FIND
Explore Fractal and Quantum Variations

Lynn Wienck

CHAPTER 1
Fractal Variations

c01.jpg
Basic Mandelbrot Set with Pseudocode
for (int i = 0; i ≤ 500; i++)
{
	for (int j = 0; j ≤ 500; j++)
	{
		x = 0.0;
		y = 0.0;
		xs = -2.5 + (i / 100.0);
		ys = -2.5 + (j / 100.0);
		k = 0;
		do
		{
			k = k + 1;
			xnew = x*x - y*y + xs;
			ynew = 2.0*x*y + ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ kmax) && (x*x + y*y ≤ 6.25));
		PlotPixel(i, j, color);
	}
}
c01.jpg
Mandelbrot Build: (f(x,y), g(x,y)) Escape: h(x,y)>value Plot
Basic Mandelbrot Set (x² - y², 2.0*x*y) x² + y² > 6.25 Pixel
Mandelbrot Variant #1 (x² - y², 2.0*x*y) x³ + y² > 6.25 Pixel
Mandelbrot Variant #2 (x*y², y*x²) x² + y² > 6.25 Pixel
Mandelbrot Variant #3 (x*y², y*x²) x² + y² > 6.25 Point
c01.jpg
Basic Julia Set with Pseudocode
for (int i = 0; i ≤ 500; i++)
{
	for (int j = 0; j ≤ 500; j++)
	{
		xs = 0.0;
		ys = 0.0;
		x = -2.5 + (i / 100.0);
		y = -2.5 + (j / 100.0);
		k = 0;
		do
		{
			k = k + 1;
			xnew = x*x - y*y + xs;
			ynew = 2.0*x*y + ys;
			x = xnew;
			y = ynew;
		} while ((k ≤ kmax) && (x*x + y*y ≤ 6.25));
		PlotPixel(i, j, color);
	}
}
c01.jpg
Julia Build: (f(x, y), g(x, y), (xs, ys)) Escape: h(x, y)>value Plot
Basic Julia Set (0.0, 0.0) (x² - y², 2.0*x*y), (0.0, 0.0) x² + y² > 6.25 Pixel
Basic Julia Set (0.39, 0.36) (x² - y², 2.0*x*y), (0.39, 0.36) x² + y² > 6.25 Pixel
Julia Variant #1 (x*y², y*x²), (0.39, 0.36) x² + y² > 6.25 Pixel
Julia Variant #2 (x*y², y*x²), (0.39, 0.36) x² + y² > 6.25 Point