CHAPTER 5
Fractal Feigenbaum Variations
Introduction to Fractal Feigenbaum Sets
Fractal Feigenbaum sets are built with Julia set structure.
Feigenbaum computation may be shown as xk+1 = a * xk * (1.0 - xk)
If the Feigenbaum computation is treated as part of the Julia xk+1 calculation and yk+1 = yk,
then a Feigenbaum figure is generated when the count, k, exceeds an arbritrary maximum value, kmax.
for (int i = 0; i ≤ 500; i++) { for (int j = 0; j ≤ 500; j++) { xs = 0.0; ys = 0.0; x = -2.5 + (i / 100.0); y = -2.5 + (j / 100.0); k = 0; do { k = k + 1; xnew = y - x * (1.0 - x) + xs; ynew = y + ys; x = xnew; y = ynew; } while ((k ≤ 255) && (x * x + y * y ≤ 6.25)); PlotPixel(i, j, color); PlotPoint(x*scale, y*scale, color); if (k > 255) PlotPixel(i, j, color); if (k > 255) PlotPoint(x*scale, y*scale, color); } }See Appendix J for additional Feigenbaum figures.