CHAPTER 9
Mandelbrot Quantum Fractal Two Spin-1 Device Entanglement
Section | {-} | {0} | {+} | Sum |
---|---|---|---|---|
x1,y1 | 601 | 199 | 3721 | 4521 |
x4,y2 | 0 | 0 | 60 | 60 |
x7,y3 | 2796 | 144 | 2118 | 5058 |
x2,y4 | 22 | 1 | 21 | 44 |
x5,y5 | 0 | 0 | 0 | 0 |
x8,y6 | 33 | 1 | 9 | 43 |
x3,y7 | 1367 | 37 | 1201 | 2605 |
x6,y8 | 16 | 0 | 1 | 17 |
x9,y9 | 1711 | 49 | 194 | 1954 |
Sum | 6546 | 431 | 7435 | 14302 |
Both Mandelbrot zⱼ ≠ 0 and zᵢ ≠ 0 are necessary to provide a complete Mandelbrot map.
Mandlebrot zⱼ and zᵢ are entangled entities and the sum of both entities provides a complete map. The three parts of the map are described and shown below:
Mandelbrot (zⱼ where zⱼ ≠ 0 and zᵢ = 0)
zⱼ reflects points found only in the y-direction. There are 4964 zⱼ pixels.
Mandelbrot (zᵢ where zᵢ ≠ 0 and zⱼ = 0)
zᵢ reflects points found only in the x-direction. There are 4565 zᵢ pixels.
Mandelbrot (zⱼ ≠ 0 and zᵢ ≠ 0)
zⱼ ≠ 0 and zᵢ ≠ 0 reflect points in common in both the x-direction and the y-direction.
The points may be common to both zⱼ and zᵢ, but the state values are different.
There are 4773 zⱼ ≠ 0 and zᵢ ≠ 0 pixels.
Mandelbrot (zⱼ ≠ 0 + zᵢ ≠ 0)
There are 253009 pixels in the map, but only 14302 pixels where either zⱼ ≠ 0 or zᵢ ≠ 0 or both zⱼ ≠ 0, zᵢ ≠ 0.
There are 431 pixels where zⱼ ≠ 0 and zᵢ ≠ 0, but their sum (zⱼ ≠ 0 + zᵢ ≠ 0) = 0.
Just because you can't see it, doesn't mean it's not there.
Section | {-} | {0} | {+} | Sum |
---|---|---|---|---|
y1 | 30 | 0 | 1423 | 1453 |
y2 | 0 | 0 | 54 | 54 |
y3 | 1945 | 0 | 45 | 1990 |
y4 | 0 | 0 | 11 | 11 |
y5 | 0 | 0 | 0 | 0 |
y6 | 8 | 0 | 2 | 10 |
y7 | 1 | 0 | 1047 | 1048 |
y8 | 0 | 0 | 1 | 1 |
y9 | 317 | 0 | 80 | 397 |
Sum | 2301 | 0 | 2663 | 4964 |
Section | {-} | {0} | {+} | Sum |
---|---|---|---|---|
y1 | 352 | 0 | 1688 | 2040 |
y2 | 0 | 0 | 2 | 2 |
y3 | 971 | 0 | 337 | 1308 |
y4 | 8 | 0 | 15 | 23 |
y5 | 0 | 0 | 0 | 0 |
y6 | 17 | 0 | 6 | 23 |
y7 | 232 | 0 | 253 | 485 |
y8 | 3 | 0 | 0 | 3 |
y9 | 733 | 0 | 156 | 889 |
Sum | 2316 | 0 | 2457 | 4773 |
Section | {-} | {0} | {+} | Sum |
---|---|---|---|---|
x1 | 165 | 0 | 863 | 1028 |
x2 | 9 | 0 | 1 | 10 |
x3 | 1049 | 0 | 23 | 1072 |
x4 | 0 | 0 | 4 | 4 |
x5 | 0 | 0 | 0 | 0 |
x6 | 13 | 0 | 0 | 13 |
x7 | 65 | 0 | 1695 | 1760 |
x8 | 6 | 0 | 4 | 10 |
x9 | 620 | 0 | 48 | 668 |
Sum | 1927 | 0 | 2638 | 4565 |
Section | {-} | {0} | {+} | Sum |
---|---|---|---|---|
x1 | 488 | 0 | 1552 | 2040 |
x2 | 16 | 0 | 7 | 23 |
x3 | 367 | 0 | 118 | 485 |
x4 | 0 | 0 | 2 | 2 |
x5 | 0 | 0 | 0 | 0 |
x6 | 3 | 0 | 0 | 3 |
x7 | 588 | 0 | 720 | 1308 |
x8 | 19 | 0 | 4 | 23 |
x9 | 796 | 0 | 93 | 889 |
Sum | 2277 | 0 | 2496 | 4773 |