FRACTAL INFORMATION
Build Information for Mandelbrot, Julia, Unit Circle, Dimension Unit Circle Variations
Mandelbrot
- Map (m, n) plane where m: pixels real axis and n: pixels imaginary axis
-
Build (f(x,y), g(x,y))
The set is zn+1 = zn² + c and written:
xn+1 = xn² - yn² + cx
yn+1 = 2.0 * xn * yn + cy
(cx, cy) is mapped to a pixel in the (m, n) plane.
(x0, y0) = (0, 0)
The computation may be written:
xn+1 = f(xn, yn) + cx
yn+1 = g(xn, yn) + cy - Escape h(x,y) > value, k > kmax where k exceeds limit or x² + y² > value
-
Plot Pixels
The escape count, k, is assigned a color.
Color plotted for each (cx, cy) in the (m, n) plane.
Plot Points
The final point (xf, yf) is scaled and plotted.
There is one (xf, yf) for each (cx, cy)
Julia
- Map (m, n) plane where m: pixels real axis and n: pixels imaginary axis
-
Build (f(x,y), g(x,y), c)
The set is zn+1 = zn² + c and written:
xn+1 = xn² - yn² + cx
yn+1 = 2.0 * xn * yn + cy
(cx, cy) is a fixed point over all iterations.
(x0, y0) is mapped to a pixel in the (m, n) plane.
The computation may be written:
xn+1 = f(xn, yn) + cx
yn+1 = g(xn, yn) + cy - Escape h(x,y) > value, k > kmax where k exceeds limit or x² + y² > value
-
Plot Pixels
The escape count, k, is assigned a color.
Color plotted for each (x0, y0) in the (m, n) plane.
Plot Points
The final point (xf, yf) is scaled and plotted.
There is one (xf, yf) for each (x0, y0).
Unit Circle
-
Map double (θ)
1 * θ
2 * θ
4 * θ
8 * θ -
Build (f(θ,x,y), g(θ,x,y))
The set is zn+1 = zn² + c and written:
xn+1 = cos(2k * θ)
yn+1 = sin(2k * θ)
The computation may be written:
xn+1 = f(θ, xn, yn)
yn+1 = g(θ, xn, yn) - Escape k > kmax 0 ≤ kmax ≤ 16
- Scale and plot final point (xf, yf)
Dimension Unit Circle
-
Map increment (θ)
0°
1°
2°
3° -
Build (fa(θ), ga(θ)) (fb(θ), gb(θ))
xa = fa(θ)
ya = ga(θ)
xb = fb(θ)
yb = gb(θ)
- Scale scalea, scaleb These values scale (xa, ya) and (xb, yb) respectively when plotting points.
- Escape θ > θmax Escape value is arbitrarily set to any value. These figures repeat the same form.
- Offset mmin, mmax The minimum value and maximum value of m, the offset count.
- Scale and plot point where ((scalea*xa + scaleb*xb*m), (scalea*ya + scaleb*yb*m))
GALLERY | Variation | Map | Build | Escape | Plot |
---|---|---|---|---|---|
above left | Mandelbrot | (500, 500) | (x*y², x²*y²) | x² + y² > 6.25 | Pixel |
above right | Mandelbrot | (500, 500) | (x*y², x²*y²) | x² + y² > 6.25 | Point |
cabbage | Mandelbrot | (800, 800) | (x + y*sin(x*y² + y*x²), y + y*cos(y*x² + x*y²)) | x² + y² > 12.0/k³ | Point |
fireflies #1 | Mandelbrot | (500, 500) | (sin(y²*x - x - y), sin(x²*y - y + x)) | x² + y² > 6.25/k | Point |
fireflies #2 | Mandelbrot | (500, 500) | (sin(-x*y² - x), sin(x²*y - y)) | x² + y² > 6.25/k | Point |
gadget #1 | Julia | (800, 800) | (-(x² - y²)*sin(y²), -2.0*x*y*cos(x²), (0.0, 0.0)) | x² + y² > 0.0 | Point |
gadget #2 | Julia | (800, 800) | (-(x² - y²)*cos(x²), -2.0*x*y*sin(y²), (0.0, 0.0)) | x² + y² > 0.0 | Point |
gadget #3 | Julia | (800, 800) | (-(x² - y²)*cos(y²), -2.0*x*y*cos(x²), (0.0, 0.0)) | x² + y² > 0.0 | Point |
horn | Julia | (800, 800) | (x*y² - x*cos(y²), y*x²*sin(y²)) | x² + y² > 0.0 | Point |
moebius-klein | Unit Circle | θ | (cos(2k * θ) ± 0.5*x, sin(2k * θ) ± 0.5*y) | k > 16 | Point |
pinwheel left | Julia | (500, 500) | (-x*y², -y*x², (1.73725, 0.0)) | x² + y² > 6.25 | Pixel |
pinwheel right | Julia | (500, 500) | (-x*y², -y*x², (1.73725, 0.0)) | x² + y² > 6.25 | Point |
spiral | Julia | (800, 800) | (sin(x² + y²), cos(x² + y²), (0.0, 0.0)) | x² + y² > m*2.0 / k³ | Point |
wave | Unit Circle | θ | (cos(2k * θ+x) - x, sin(2k * θ+y) + y) | k > 16 | Point |
GALLERY | Variation | Map | Build | Scale | Offset | Plot |
---|---|---|---|---|---|---|
round corners | Dimension Unit Circle | θ | (cos(-0.75*θ), sin(0.5*θ)) (cos(θ), sin(θ)) | 250.0, 4.0 | 0, 19 | Point |
shaded ball | Dimension Unit Circle | θ | (cos(θ), sin(θ)) (cos(-0.5*θ), sin(0.55*θ) | 200.0, 4.0 | 0, 45 | Point |
up-down square | Dimension Unit Circle | θ | (cos(0.501*θ)*tan(0.501*θ), cos(0.999*θ)*tan(0.999*θ)) (cos(0.501*θ)*tan(0.501*θ), cos(0.999*θ)*tan(0.999*θ)) | 225.0, 3.0 | 0, 51 | Point |
universe | Dimension Unit Circle | θ | (cos(0.998*θ)*tan(0.998*θ), cos(0.998*θ)*cos(0.999*θ)) (cos(0.998*θ)*tan(0.998*θ), cos(0.998*θ)*cos(0.999*θ)) | 225.0, 3.0 | 0, 51 | Point |